Tujuan dari data mining itu sendiri adalah mencari data pada sebuah database / data warehouse, yang dapat meramalkan prosepek masa depan . Jika anda belum memahami konsep data mining klik disini.. Jika anda telah mengerti , tentunya anda akan bertanya bagaimanakah proses kerja data mining itu dan cara kerjanya ?. Jawabannya dapat anda dapatkan di Blog kami.
Proses Data Mining
Karena DM adalah suatu rangkaian proses, DM dapat dibagi menjadi beberapa tahap yang diilustrasikan pada gambar diatas :
1. Pembersihan data (untuk membuang data yang tidak konsisten dan noise)
2. Integrasi data (penggabungan data dari beberapa sumber)
3. Transformasi data (data diubah menjadi bentuk yang sesuai untuk di-mining)
4. Aplikasi teknik DM
5. Evaluasi pola yang ditemukan (untuk menemukan yang menarik/bernilai)
6. Presentasi pengetahuan (dengan teknik visualisasi)
Tahap-tahap diatas, bersifat interaktif di mana pemakai terlibat langsung atau dengan perantaraan knowledge base.
Knowledge Discovery and Data Mining(KDD) adalah proses yang dibantu oleh komputer untuk menggali dan menganalisis sejumlah besar himpunan data dan mengekstrak informasi dan pengetahuan yang berguna. Data mining tools memperkirakan perilaku dan tren masa depan, memungkinkan bisnis untuk membuat keputusan yang proaktif dan berdasarkan pengetahuan. Data mining tools mampu menjawab permasalahan bisnis yang secara tradisional terlalu lama untuk diselesaikan. Data mining tools menjelajah database untuk mencari pola tersembunyi, menemukan infomasi yang prediktif yang mungkin dilewatkan para pakar karena berada di luar ekspektasi mereka.
Proses dalam KDD adalah proses yang digambarkan pada dan terdiri dari rangkaian proses iteratif sebagai berikut:
1. Data cleaning, menghilangkan noise dan data yang inkonsisten.
2. Data integration, menggabungkan data dari berbagai sumber data yang berbeda
3. Data selection, mengambil data yang relevan dengan tugas analisis dari database
4. Data transformation, Mentransformasi atau menggabungkan data ke dalam bentuk yang sesuai untuk penggalian lewat operasi summary atau aggregation.
5. Data mining, proses esensial untuk mengekstrak pola dari data dengan metode cerdas.
6. Pattern evaluation, mengidentifikasikan pola yang menarik dan merepresentasikan pengetahuan berdasarkan interestingness measures.
7. Knowledge presentation, penyajian pengetahuan yang digali kepada pengguna dengan menggunakan visualisasi dan teknik representasi pengetahuan.
Cara kerja Data Mining
Bagaimana tepatnya data mining “menggali” hal-hal penting yang belum diketahui sebelumnya atau memprediksi apa yang akan terjadi? Teknik yang digunakan untuk melaksanakan tugas ini disebut pemodelan. Pemodelan di sini dimaksudkan sebagai kegiatan untuk membangun sebuah model pada situasi yang telah diketahui “jawabannya” dan kemudian menerapkannya pada situasi lain yang akan dicari jawabannya.
Sebagai contoh di sini diambil pencarian solusi bisnis di bidang telekomunikasi. Ada beberapa perusahaan telekomunikasi yang beroperasi di sebuah negara dan dimisalkan pihak manajemen sebuah perusahaan bermaksud untuk menjaring kustomer baru untuk jasa layanan sambungan langsung jarak jauh (SLJJ). Pihak manajemen dapat “menghubungi” calon-calon kustomer dengan memilih secara acak kemudian menawari mereka dengan diskon khusus, dengan hasil yang kemungkinan besar kurang menggembirakan, atau dengan memanfaatkan pengalaman-pengalaman bisnis yang saat ini sudah tersimpan di basis data perusahaan untuk membangun sebuah model. Perusahaan ini telah memiliki banyak informasi mengenai kustomer perusahaan tersebut: umur, jenis kelamin, sejarah penggunaan fasilitas kredit dan penggunaan SLJJ. Juga sudah diketahui informasi mengenai calon-calon kustomer: umur, jenis kelamin, sejarah penggunaan fasilitas kredit, dll. Masalahnya adalah penggunaan SLJJ untuk para calon kustomer ini belum diketahui, karena mereka saat ini menjadi kustomer dari perusahaan lain. Yang dipikirkan pihak manajemen adalah mencari calon kustomer yang akan menggunakan banyak jasa SLJJ. Usaha untuk mencari jawaban masalah ini dilakukan dengan membangun sebuah model. Tabel 1 memberikan ilustrasi mengenai pembangunan model untuk menentukan calon kustomer (prospek) di sebuah gudang data.
Tabel 1. Data Mining untuk Menentukan Prospek
Status | Kostumer | Prospek |
informasi umum (contoh: data demografis) | Diketahui | Diketahui |
informasi khusus (contoh: trasaksi kustomer) | Diketahui | Target |
Gol dari pemodelan ini adalah untuk membuat perkiraan yang didasari kalkulasi untuk mengisi informasi di kuadran kanan bawah pada Tabel 1, berdasar pada informasi umum dan khusus yang sudah ada (dimiliki oleh perusahaan itu). Misalnya, sebuah model sederhana untuk perusahaan telekomunikasi itu adalah: 98% kustomer “milik” perusahaan itu yang berpenghasilan $60.000/tahun membelanjakan lebih dari $80/bulan untuk penggunaan SLJJ. Model ini kemudian dapat diterapkan untuk menarik kesimpulan dari informasi khusus (sebagai data prospek), dimana saat ini informasi khusus tersebut tidak dimiliki oleh perusahaan. Dengan model ini, calon-calon kustomer baru dapat ditarget secara selektif.
Terima kasih telah membaca materi kami, semoga bermanfaat bagi anda .. Kami mengharap FEEDBACK dari pembaca sekalian . Jika anda mengambil sebagian atau seluruh dari isi agar menampilkan Blog kami sebagai referensi anda.
Jika pembaca sekalian mempunyai pendapat lain tentan Proses dan Cara Kerja Data Mining, dapat berkomentri dibawah ..
0 comments:
Post a Comment
Tim Gudang Materi mengharapkan komentar anda sebagai kritik dan saran untuk kami .. Hubungi kami jika anda mengalami kesulitan !