Himpunan adalah kumpulan benda-benda yang didefinisikan (diberi batasan) dengan jelas.
Istilah kelompok, kumpulan, maupun gugus dalam matematika disebut dengan istilah himpunan. Konsep tentang himpunan pertama kali dikemukakan oleh seorang matematikawan berkebangsaan Jerman bernama Georg Cantor (1845-1918)Benda yang termasuk dalam himpunan biasa disebut dengan anggota, elemen, atau unsur.
Contoh Kelompok/kumpulan yang merupakan suatu himpunan:
Kelompok hewan berkaki empat.
Yang merupakan anggota, misalnya: kerbau, kuda, kambing
Yang merupakan bukan anggota, misalnya: ayam, bebek, itik
Contoh Kelompok/kumpulan yang bukan merupakan suatu himpunan:
Kumpulan siswa di kelasmu yang berbadan tinggi.
Pengertian tinggi tidak jelas harus berapa cm batasannya.
Mengapa disebut begitu?? karena batasan contoh di atas tidak jelas. Di dalam Matematika kumpulan tidak dapat disebut himpunan jika batasannya tidak jelas.
Suatu himpunan dinyatakan dengan tiga cara yaitu:
1. Dengan kata-kata
Menyatakan himpunan dengan kata-kata sangat bermanfaat untuk himpunan yang memiliki anggota sangat banyak dan tak beraturan, sehingga kita akan mengalami kesulitan bila anggota-anggotanya ditulis satu persatu
2. Dengan notasi pembentuk himpunan
Menyatakan suatu himpunan dengan notasi pembentuk himpunan adalah menyatakan suatu himpunan hanya dengan syarat keanggotaan himpunan
3. Dengan mendaftar anggota-anggotanya
Dengan cara ini, anggota-anggota himpunan ditulis dalam kurung kurawal dan dipisahkan dengan tanda koma. Pada penulisan himpunan dengan cara mendaftar anggota-anggotanya, jika semua anggota dapat ditulis maka urutan penulisan boleh diabaikan.
Jika suatu himpunan mempunyai anggota sangat banyak dan memiliki pola tertentu maka penulisannya dapat dilakukan dengan menggunakan tiga buah titik yang dibaca "dan seterusnya".
Contoh:
A = {bilangan asli}, maka dapat dituliskan sebagai:
A = {1, 2, 3, 4, . . .}.
Akan tetapi jika himpunan itu anggotanya terbatas maka kita menulisnya dengan cara:
P = {bilangan cacah ganjil kurang dari 100}, maka:
P = {1, 3, 5, 7, 9, . . . , 99}.
Himpunan semesta adalah himpunan yang memuat semua anggota himpunan yang dibicarakan. Himpunan semesta disebut juga semesta pembicaraan atau himpunan universum. Lambang himpunan semesta adalah S.
Untuk memahami pengertian himpunan semesta perhatikan contoh berikut ini:
S = {murid-murid di sekolahmu},
A = {murid-murid di kelasmu}.
Ternyata himpunan S memuat semua anggota himpunan A, sehingga himpunan merupakan himpunan semesta dari himpunan A.
Ini adalah diagram venn. Diagram venn adalah cara lain untuk menyatakan suatu himpunan dengan gambar atau diagram. Diagram venn ini pertama kali ditemukan oleh ahli matematika berkebangsaan Inggris yang bernama John Venn (1834-1923).
Ketentuan dalam membuat diagram venn sebagai berikut:
1. Himpunan semesta digambarkan dengan sebuah persegi panjang dan di pojok kiri diberi simbol S.
2. Setiap anggota himpunan semesta ditunjukkan dengan sebuah noktah di dalam persegi panjang itu, dan nama anggotanya ditulis berdekatan dengan noktahnya.(lihat gambar di atas)
Misal: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20}
3. Setiap himpunan yang termuat di dalam himpunan semesta ditunjukkan oleh kurva tutup sederhana.
Misal: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20}
A = {1, 2, 3, 4,5, 6, 7, 8, 9}
B = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
Karena semua anggota himpunan A dan B termuat di dalam himpunan S, maka himpunan A dan B di dalam himpunan S.
Yang dimaksud Irisan Himpunan adalah anggota persekutuan antara A dan B (lihat gambar di atas).
Irisan himpunan dari persekutuan A dan B adalah 2, 4, 6, 8.
Baca Selengkapnya ..
Istilah kelompok, kumpulan, maupun gugus dalam matematika disebut dengan istilah himpunan. Konsep tentang himpunan pertama kali dikemukakan oleh seorang matematikawan berkebangsaan Jerman bernama Georg Cantor (1845-1918)Benda yang termasuk dalam himpunan biasa disebut dengan anggota, elemen, atau unsur.
Contoh Kelompok/kumpulan yang merupakan suatu himpunan:
Kelompok hewan berkaki empat.
Yang merupakan anggota, misalnya: kerbau, kuda, kambing
Yang merupakan bukan anggota, misalnya: ayam, bebek, itik
Contoh Kelompok/kumpulan yang bukan merupakan suatu himpunan:
Kumpulan siswa di kelasmu yang berbadan tinggi.
Pengertian tinggi tidak jelas harus berapa cm batasannya.
Mengapa disebut begitu?? karena batasan contoh di atas tidak jelas. Di dalam Matematika kumpulan tidak dapat disebut himpunan jika batasannya tidak jelas.
Suatu himpunan dinyatakan dengan tiga cara yaitu:
1. Dengan kata-kata
Menyatakan himpunan dengan kata-kata sangat bermanfaat untuk himpunan yang memiliki anggota sangat banyak dan tak beraturan, sehingga kita akan mengalami kesulitan bila anggota-anggotanya ditulis satu persatu
2. Dengan notasi pembentuk himpunan
Menyatakan suatu himpunan dengan notasi pembentuk himpunan adalah menyatakan suatu himpunan hanya dengan syarat keanggotaan himpunan
3. Dengan mendaftar anggota-anggotanya
Dengan cara ini, anggota-anggota himpunan ditulis dalam kurung kurawal dan dipisahkan dengan tanda koma. Pada penulisan himpunan dengan cara mendaftar anggota-anggotanya, jika semua anggota dapat ditulis maka urutan penulisan boleh diabaikan.
Jika suatu himpunan mempunyai anggota sangat banyak dan memiliki pola tertentu maka penulisannya dapat dilakukan dengan menggunakan tiga buah titik yang dibaca "dan seterusnya".
Contoh:
A = {bilangan asli}, maka dapat dituliskan sebagai:
A = {1, 2, 3, 4, . . .}.
Akan tetapi jika himpunan itu anggotanya terbatas maka kita menulisnya dengan cara:
P = {bilangan cacah ganjil kurang dari 100}, maka:
P = {1, 3, 5, 7, 9, . . . , 99}.
Himpunan semesta adalah himpunan yang memuat semua anggota himpunan yang dibicarakan. Himpunan semesta disebut juga semesta pembicaraan atau himpunan universum. Lambang himpunan semesta adalah S.
Untuk memahami pengertian himpunan semesta perhatikan contoh berikut ini:
S = {murid-murid di sekolahmu},
A = {murid-murid di kelasmu}.
Ternyata himpunan S memuat semua anggota himpunan A, sehingga himpunan merupakan himpunan semesta dari himpunan A.
Ini adalah diagram venn. Diagram venn adalah cara lain untuk menyatakan suatu himpunan dengan gambar atau diagram. Diagram venn ini pertama kali ditemukan oleh ahli matematika berkebangsaan Inggris yang bernama John Venn (1834-1923).
Ketentuan dalam membuat diagram venn sebagai berikut:
1. Himpunan semesta digambarkan dengan sebuah persegi panjang dan di pojok kiri diberi simbol S.
2. Setiap anggota himpunan semesta ditunjukkan dengan sebuah noktah di dalam persegi panjang itu, dan nama anggotanya ditulis berdekatan dengan noktahnya.(lihat gambar di atas)
Misal: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20}
3. Setiap himpunan yang termuat di dalam himpunan semesta ditunjukkan oleh kurva tutup sederhana.
Misal: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20}
A = {1, 2, 3, 4,5, 6, 7, 8, 9}
B = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
Karena semua anggota himpunan A dan B termuat di dalam himpunan S, maka himpunan A dan B di dalam himpunan S.
Yang dimaksud Irisan Himpunan adalah anggota persekutuan antara A dan B (lihat gambar di atas).
Irisan himpunan dari persekutuan A dan B adalah 2, 4, 6, 8.