Regresi merupakan suatu alat ukur yang juga dapat digunakan untuk mengukur ada atau tidaknya korelasi antarvariabel. Jika kita memiliki dua buah variabel atau lebih maka sudah selayaknya apabila kita ingin mempelajari bagaimana variabel-variabel itu berhubungan atau dapat diramalkan.
Analisis regresi mempelajari hubungan yang diperoleh dinyatakan dalam persamaan matematika yang menyatakan hubungan fungsional antara variabel-variabel. Hubungan fungsional antara satu variabel prediktor dengan satu variabel kriterium disebut analisis regresi sederhana (tunggal), sedangkan hubungan fungsional yang lebih dari satu variabel disebut analisis regresi ganda.
Istilah regresi (ramalan/taksiran) pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1877 sehubungan dengan penelitiannya terhadap tinggi manusia, yaitu antara tinggi anak dan tinggi orang tuanya. Pada penelitiannya Galton mendapatkan bahwa tinggi anak dari orang tua yang tinggi cenderung meningkat atau menurun dari berat rata-rata populasi. Garis yang menunjukkan hubungan tersebut disebut garis regresi.
Analisis regresi lebih akurat dalam melakukan analisis korelasi, karena pada analisis itu kesulitan dalam menunjukkan slop (tingkat perubahan suatu variabel terhadap variabel lainnya dapat ditentukan). Dengan demikian maka melalui analisis regresi, peramalan nilai variabel terikat pada nilai variabel bebas lebih akurat pula.
Persamaan Regresi Linier dari Y terhadap X
Persamaan regresi linier dari Y terhadap X dirumuskan sebagai berikut:
Y = a + b X
keterangan:
Y = variabel terikat
X = variabel bebas
a = intersep
b = koefisien regresi/slop
Pada persamaan tersebut di atas, nilai a dan b dapat ditentukan dengan cara sebagai berikut:
Terima kasih kepada pembaca sekalian , semoga dapat berguna bagi kita semua , dan bagi penulis silahkan lihat di contoh soal dan penjelasan dari Regresi Linear Sederhana.
0 comments:
Post a Comment
Tim Gudang Materi mengharapkan komentar anda sebagai kritik dan saran untuk kami .. Hubungi kami jika anda mengalami kesulitan !